Fourier Transform Infrared Spectroscopy of Azide Ion in Reverse Micelles **Qun Zhong** Naval Research Laboratory Washington, DC 20375 Email: qun.zhong@nrl.navy.mil http://chem1.nrl.navy.mil/molecular/qun/osu57.pdf #### Introduction 1. What are reverse micelles (RMs)? Nanosize water droplets solubilized in oil phase by surfactants #### 2. Why studying RMs? Wide range of applications — Biocatalysis, drug delivery, nanoparticle fabrication, micro-reactor, solvation dynamics in confined environment. #### 3. How to study RMs? - Time-resolved fluorescence, dynamic light scattering aggregation - FTIR and Raman spectroscopy structure - Probe molecules (organic dye) solvation interaction #### 4. Focus of this work: - Sizes of NP RMs by Time-resolved fluorescence quenching - FTIR of O-H stretch of water and C-O stretch of NP - Vibrational band of azide ion to probe NP RMs # Experimental #### Materials ``` nonionic NPn \rightarrow C₉H₁₉—\bigcirc (OCH₂CH₂)_n—OH (NP7/NP4=4) anionic AOT \rightarrow (C₈H₁₇—O—C—)₂CH—SO_3 Na⁺ cationic CTAB \rightarrow C₁₆H₃₃—N(CH₃)₃+ Br⁻ \omega = [H₂O]/[surfactant] ``` - FTIR → Mattson 7020A (resolution: 1 cm⁻¹) - ➤ TRFQ^a → fluorophore dye: Ru(bpy)₃(CI)₂ quencher: methyl viologen $$[dye]/[M] < 0.04$$ $[Q]/[M]<1.2$ ^a Lang et. al. J. Phys. Chem. **92**, 1946 (1988). #### Time-resolved fluorescence quenching Aggregation number + radius of NP RMs $$I(t) = I_0 \exp\{-A_2 t - A_3 [1 - \exp(-A_4 t)]\}$$ $$A_2 = k_0 + (k_e k_Q / A_4) [Q]$$ $$A_3 = [Q] / [M] \cdot (k_Q / A_4)^2$$ $$A_4 = k_Q + k_e [M]$$ $$N = A_3([surfactant]-CMC)/[Q] \cdot [(A_3A_4+A_2-k_0)/A_3A_4]^2$$ $$R_{\omega} = [3N\omega V_{H_2O}/4\pi]^{1/3}$$ $CMC = 0.031 M$ $V_{H_2O} = 29.9 \text{ Å}^3$ #### Aggregation number of NP RMs in cyclohexane #### NP RMs in cyclohexane: - [NP] = 0.28 M, ω_{max} = 13 - $\omega_{\rm max}$ increases with [NP] #### Aggregation number: - ullet increases with increasing ω - increases at elevated T - independent of - ° concentration of NP - ° added sodium azide ^b C₁₂E₄ in cyclohexane: Caldararu *et. al. Adv. Colloid and Interface Sci.* **89-90**, 169 (2001). #### FTIR of O-H and C-O stretch bands in NP RMs #### As ω increases: - red-shift in C-O stretch - water becomes more bulk-like # Antisymmetric v_3 vibration of azide ion in NP RMs $$\delta - N = \stackrel{\delta^+}{N} = N^{\delta^-}$$ ### The v_3 band: - in gas phase- 1987 cm⁻¹ - in bulk water- 2049 cm⁻¹ - shows no dependence on - ° azide ion concentration - surfactant concentration - ° added salts - blue shift towards bulk at elevated T - similar shift in C-N stretch of OCN- and SCN- ions ## Antisymmetric v_3 vibration of azide ion # Possible causes for the v_3 shift : - charge of the surfactant - location of the ion - polarity of water - presence of Na⁺ # Summary - \triangleright NP RMs grow in size with ω - Water become more bulk-like as ω increases - R_{ω} = 13 ~ 34 Å for NP RMs at ω = 1 to 10 R_{ω} is insensitive to [NP] - \triangleright The v_3 vibrational band of azide ion solute IR probe of RMs - The v_3 frequency depends on the surfactant charge - ° blue shifts in AOT RMs compared to in bulk water - ° red shifts in NP and CTAB RMs compared to in bulk water - The ν_3 band tends toward the bulk value with ω - Ongoing studies on RMs - time-resolved dynamics <u>vibrational relaxation</u>, photodetachment, photodissociation, and recombination ### Time-resolved dynamics in reverse micelle - Relaxation rate depends on ω : shift towards the bulk value at large ω - Polarization dependent exp. vibrational relaxation reorientation time - VIS pump IR probe photodetachment, photodissociation, and recombination - Surfactant charge effect on dynamics Vibrational relaxation of the v_3 band of azide in NP RMs by IR pump – IR probe Normalized Transient Absorbance Change # Acknowledgements Jeff Owrutsky **Daniel Steinhurst** Andy Baronavski **Everett Carpenter** This work was supported by the office of Naval Research through the Naval Research Laboratory. This work was performed while QZ held a Naval Research Laboratory – National Research Council Research Associateship.